3,190 research outputs found

    Linearized Asymptotic Stability for Fractional Differential Equations

    Get PDF
    We prove the theorem of linearized asymptotic stability for fractional differential equations. More precisely, we show that an equilibrium of a nonlinear Caputo fractional differential equation is asymptotically stable if its linearization at the equilibrium is asymptotically stable. As a consequence we extend Lyapunov's first method to fractional differential equations by proving that if the spectrum of the linearization is contained in the sector \{\lambda \in \C : |\arg \lambda| > \frac{\alpha \pi}{2}\} where α>0\alpha > 0 denotes the order of the fractional differential equation, then the equilibrium of the nonlinear fractional differential equation is asymptotically stable

    A continuum-microscopic method based on IRBFs and control volume scheme for viscoelastic fluid flows

    Get PDF
    A numerical computation of continuum-microscopic model for visco-elastic flows based on the Integrated Radial Basis Function (IRBF) Control Volume and the Stochastic Simulation Techniques (SST) is reported in this paper. The macroscopic flow equations are closed by a stochastic equation for the extra stress at the microscopic level. The former are discretised by a 1D-IRBF-CV method while the latter is integrated with Euler explicit or Predictor-Corrector schemes. Modelling is very efficient as it is based on Cartesian grid, while the integrated RBF approach enhances both the stability of the procedure and the accuracy of the solution. The proposed method is demonstrated with the solution of the start-up Couette flow of the Hookean and FENE dumbbell model fluids

    The Flexible Group Spatial Keyword Query

    Full text link
    We present a new class of service for location based social networks, called the Flexible Group Spatial Keyword Query, which enables a group of users to collectively find a point of interest (POI) that optimizes an aggregate cost function combining both spatial distances and keyword similarities. In addition, our query service allows users to consider the tradeoffs between obtaining a sub-optimal solution for the entire group and obtaining an optimimized solution but only for a subgroup. We propose algorithms to process three variants of the query: (i) the group nearest neighbor with keywords query, which finds a POI that optimizes the aggregate cost function for the whole group of size n, (ii) the subgroup nearest neighbor with keywords query, which finds the optimal subgroup and a POI that optimizes the aggregate cost function for a given subgroup size m (m <= n), and (iii) the multiple subgroup nearest neighbor with keywords query, which finds optimal subgroups and corresponding POIs for each of the subgroup sizes in the range [m, n]. We design query processing algorithms based on branch-and-bound and best-first paradigms. Finally, we provide theoretical bounds and conduct extensive experiments with two real datasets which verify the effectiveness and efficiency of the proposed algorithms.Comment: 12 page

    A robust sequential hypothesis testing method for brake squeal localisation

    Get PDF
    This contribution deals with the in situ detection and localisation of brake squeal in an automobile. As brake squeal is emitted from regions known a priori, i.e., near the wheels, the localisation is treated as a hypothesis testing problem. Distributed microphone arrays, situated under the automobile, are used to capture the directional properties of the sound field generated by a squealing brake. The spatial characteristics of the sampled sound field is then used to formulate the hypothesis tests. However, in contrast to standard hypothesis testing approaches of this kind, the propagation environment is complex and time-varying. Coupled with inaccuracies in the knowledge of the sensor and source positions as well as sensor gain mismatches, modelling the sound field is difficult and standard approaches fail in this case. A previously proposed approach implicitly tried to account for such incomplete system knowledge and was based on ad hoc likelihood formulations. The current paper builds upon this approach and proposes a second approach, based on more solid theoretical foundations, that can systematically account for the model uncertainties. Results from tests in a real setting show that the proposed approach is more consistent than the prior state-of-the-art. In both approaches, the tasks of detection and localisation are decoupled for complexity reasons. The localisation (hypothesis testing) is subject to a prior detection of brake squeal and identification of the squeal frequencies. The approaches used for the detection and identification of squeal frequencies are also presented. The paper, further, briefly addresses some practical issues related to array design and placement. (C) 2019 Author(s)

    Improving imaging resolution of shaking targets by Fourier-transform ghost diffraction

    Full text link
    For conventional imaging, shaking of the imaging system or the target leads to the degradation of imaging resolution. In this work, the influence of the target's shaking to fourier-transform ghost diffraction (FGD) is investigated. The analytical results, which are backed up by numerical simulation and experiments, demonstrate that the quiver of target has no effect on the resolution of FGD, thus the target's imaging with high spatial resolution can be always achieved by phase-retrieval method from the FGD patterns. This approach can be applied in high-precision imaging systems, to overcome the influence of the system's shaking to imaging resolution.Comment: 4 pages, 4 figure

    High-order fluid solver based on a combined compact integrated RBF approximation and its fluid structure interaction applications

    Get PDF
    In this study, we present a high-order numerical method based on a combined compact integrated RBF (IRBF) approximation for viscous flow and fluid structure interaction (FSI) problems. In the method, the fluid variables are locally approximated by using the combined compact IRBF, and the incompressible Navier-Stokes equations are solved by using the velocity-pressure formulation in a direct fully coupled approach. The fluid solver is verified through various problems including heat, Burgers, convection-diffusion equations, Taylor-Green vortex and lid driven cavity flows. It is then applied to simulate some FSI prob- lems in which an elastic structure is immersed in a viscous incompressible fluid. For FSI simulations, we employ the immersed boundary framework using a regular Eulerian computational grid for the fluid mechanics together with a Lagrangian representation of the immersed boundary. For the immersed fibre/membrane FSI problems, although the order of accuracy of the present scheme is generally similar to FDM approaches reported in the literature, the present approach is nonetheless more accurate than FDM approaches at comparable grid spacings. The numerical results obtained by the present scheme are highly accurate or in good agreement with those reported in earlier studies of the same problems
    corecore